Compact formula | - 472355675494016[12575227775843] - 70391859458532[13474294213307] - 15852482045700[15962244871097] + 648620192990580[18203022356332] + 298820368802828[18758177079442] - 473192352425744[19315514384367] + 322091078508980[43777069138111/2] + 71354473655004[24583813961543] - 63531816126012[37179598561432] + 196751885695192[38057255532937] + 20793095858116[46150510628682] + 178927627777584[52069489979033] - 243066828643272[53082257312807] + 19089223763988[69971515635443] - 217645834050800[175614682377261/2] + 52619762068112[169838669284032] - 224982378629316[180481359172943] + 464027618020468[240926005152903] + 260373805739896[295684706259317] + 43514871868640[389928169608307] - 289617893642408[686308367425978] - 162994771004520[1280491925873282] + 272680824911252[1516106667217682] - 193689959050764[1900216428167270] + 310115450070664[4184847325111003] + 536888134157656[4439568777547493] - 194339480142136[24412992821228897] - 507252235015268[38716856599806432] - 373917107522076[39840505668541817] + 98425946193340[74295753693510382] |
Lehmer's measure | 2.09537 |
References | Wetherfield, Michael Roby and Chien-Lih, Hwang. Computing pi: Lists of Machin-type (inverse cotangent) identities for pi/4, [Online; accessed 04-February-2024], 2013. [web.archive.org/web/20240204042153/http] [Found by Amrik Singh Nimbran on 17 June 2011.] |