Compact formula | 6638759392758[14483848717682] - 11768347131013[15962244871097] + 66139371352551/2[16083127751238] - 51286923607451/2[16248096944867] + 15297959132142[16326085782557] + 36498915372523/2[19507778531302] + 13618567891689[20293776947868] + 25813104752086[21602138452318] + 3937544159823[69569213044365/2] - 41580777192839/2[36918949984093] - 11151289954787[69971515635443] - 44427687575869/2[83979525486773] + 25961834284111/2[194151845499011/2] + 30168587862015/2[129271780546462] - 74409661277039/2[158682175700807] + 9673346827427/2[256093522057693] + 7237358237595[309087578314273] - 2386183523636[474397757071282] + 189495491757/2[600662758381590] - 10264867439083/2[686308367425978] + 627179674429[832181505450757] + 1070813886195/2[1367017926441055] + 45416794855829/2[1443713070245525] + 57396108038221/2[2799978903689557] + 13045313450007[7783134400901473/2] + 10162424081001[4088593248636842] + 8073515547771/2[4161072789242257] - 7630931865843/2[6805164953551432] - 23436369811495/2[7474541196075273] + 12378302157923[74295753693510382] |
Lehmer's measure | 2.09165 |
References | Wetherfield, Michael Roby and Chien-Lih, Hwang. Computing pi: Lists of Machin-type (inverse cotangent) identities for pi/4, [Online; accessed 04-February-2024], 2013. [web.archive.org/web/20240204042153/http] [Found by MRW on 19 August 2011.] |