Compact formula | 4396599624182[14483848717682] - 44565151799231/2[15962244871097] + 20529188715768[16083127751238] - 15267479219661/2[16248096944867] + 8987851957579[16326085782557] + 21965051215687[19507778531302] + 8573564356474[20293776947868] + 8463625567651/2[21602138452318] + 17534814638177[69569213044365/2] + 6482786523837/2[36918949984093] + 6285677419365/2[69971515635443] + 18786297768629/2[175614682377261/2] + 27226937923459/2[194151845499011/2] + 80762358857387/2[129271780546462] - 6166083419503[169838669284032] - 43550241579033/2[309087578314273] - 1234662259911[600662758381590] - 8848027248967[686308367425978] + 54506950355809/2[832181505450757] + 35314736634667/2[963777344919407] + 4251000472523[1367017926441055] - 692656602391/2[1443713070245525] + 5090493858945[2799978903689557] + 20884433782145[3386696477716649] - 39494130945943/2[7783134400901473/2] + 16688972021195/2[4088593248636842] - 799915639828[4161072789242257] - 7531059462347[6805164953551432] + 3208495578396[7474541196075273] - 28495986691105/2[74295753693510382] |
Lehmer's measure | 2.08499 |
References | Wetherfield, Michael Roby and Chien-Lih, Hwang. Computing pi: Lists of Machin-type (inverse cotangent) identities for pi/4, [Online; accessed 04-February-2024], 2013. [web.archive.org/web/20240204042153/http] [Found by MRW on 19 August 2011.] |