M000000007

$$\pi=332\arctan\left(\frac{1}{107}\right)+68\arctan\left(\frac{1}{1741}\right)-20\arctan\left(\frac{2}{226043}\right)-68\arctan\left(\frac{2}{75422509}\right)-20\arctan\left(\frac{1}{109027476193}\right)+68\arctan\left(\frac{1}{30705803243198}\right)-68\arctan\left(\frac{1}{193281764136998932}\right)+20\arctan\left(\frac{2}{3375905320682366575989}\right)$$
Compact formula332[107] + 68[1741] - 20[226043/2] - 68[75422509/2] - 20[109027476193] + 68[30705803243198] - 68[193281764136998932] + 20[3375905320682366575989/2]
Lehmer's measure1.40091
References
Wetherfield, Michael Roby and Chien-Lih, Hwang. Computing pi: Lists of Machin-type (inverse cotangent) identities for pi/4, [Online; accessed 04-February-2024], 2013. [web.archive.org/web/20240204042153/http] [Found by Amrik Singh Nimbran on 13 June 2009.]